数学分析(1):第5次习题课

刘思齐

1. 设 $C(\mathbb{R})$ 是 \mathbb{R} 上连续函数的全体, 求证: $|C(\mathbb{R})| = |\mathbb{R}|$ 。

解答: 设 $f \in C(\mathbb{R})$, r_1, r_2, \ldots 是全体有理数的一个排列, $x_n = f(r_n)$ $(n = 1, 2, \ldots)$ 。根据连续函数的性质, f 的取值由 $\{x_n\}$ 决定。所以映射 $f \mapsto \{x_n\}$ 是单射,于是 $C(\mathbb{R})$ 的势不大于全体实数数列构成的集合的势。

设 $\{x_n\}$ 是一个实数数列,因为 $|\mathbb{R}| = |(0,1)|$,所以不妨设 $\{x_n\} \subseteq (0,1)$,于是可以写出它的无穷小数表示:

$$x_n = 0.x_{n1}x_{n2}x_{n3}\dots n = 1, 2, \dots$$

现在构造一个新的小数:

$$y = 0.x_{11}x_{12}x_{21}x_{13}x_{22}x_{31}x_{14}x_{23}x_{32}x_{41}\dots,$$

那么映射 $\{x_n\} \mapsto y$ 是单的,于是 $|C(\mathbb{R})| \leq |\mathbb{R}|$ 。

另一方面,每个实数对应一个常数函数,所以显然有 $|\mathbb{R}| \leq |C(\mathbb{R})|$,所以有 $|C(\mathbb{R})| = |\mathbb{R}|$ 。

2. 设函数 $f: \mathbb{R} \to \mathbb{R}$ 满足:

$$f(x+y) = f(x) + f(y), \quad \forall x, y \in \mathbb{R}.$$

若 f(x) 在某一 $x_0 \in \mathbb{R}$ 处不连续,则 f 在任意区间 $[a,b] \subseteq \mathbb{R}$ 上无界。

解答: 易证对任意的 $\alpha, \beta \in \mathbb{Q}$,有

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \quad \forall x, y \in \mathbb{R}.$$

特别地,如果 $x \in \mathbb{Q}$,有 f(x) = cx,其中 c = f(1)。如果对所有的 $x \in \mathbb{R}$,有 f(x) = cx,那么 f 显然连续。所以如果 f 在 x_0 不连续,那么至少有一点 $x_1 \in \mathbb{R}$ 满足 $f(x_1) \neq cx_1$,记 $D = |f(x_1) - cx_1|$ 。

对于闭区间 [a,b],定义 $M_1=\max_{x\in[a,b]}|cx|$ 。对任给的正数 M,先取一个有理数 α ,使得 $\alpha>(M_1+M)/D$; 再取一个有理数 β ,使得 $x=\alpha\,x_1+\beta\in[a,b]$,则有:

$$|f(x)| = |\alpha f(x_1) + c\beta| = |\alpha (f(x_1) - cx_1) + cx| \ge \alpha D - M_1 > M.$$

所以 f 在 [a,b] 上无界。

3. 构造一个 ℝ 上的严格单调函数, 使得它在所有有理点上不连续。

解答: 设 r_1, r_2, \ldots 是全体有理数的一个排列,对于任意的 $x \in \mathbb{R}$,定义集合

$$N_x = \{ n \in \mathbb{N} | r_n < x, \ n \neq 0 \},$$

然后定义函数

$$f(x) = \sum_{n \in N_x} 2^{-n},$$

上式右边的级数是收敛的,所以的确定义了一个函数。它严格单调,并且以所有有理数为间断点。

4. 对于 \mathbb{R} 的任一子集 E, 定义函数 $\rho_E: \mathbb{R} \to \mathbb{R}$ 如下:

$$\rho_E(x) = \inf_{y \in E} \{|x - y|\},$$

求证: ρ_E 在 \mathbb{R} 上一致连续。

解答: 任取 $x,y \in \mathbb{R}$,根据下确界的定义,对于任意的 $\epsilon > 0$,存在一个 $z \in E$ 满足

$$\rho_E(x) + \epsilon > |x - z| > |y - z| - |x - y|,$$

于是有

$$\rho_E(y) \le |y - z| < \rho_E(x) + \epsilon + |x - y|,$$

$$|\rho_E(x) - \rho_E(y)| \le |x - y|,$$

由此可以证明 ρ_E 的一致连续性。

5. 设 $E \subseteq \mathbb{R}$ 是一个有界集,如果 E 上的任意连续函数都能达到最小值,求证: E 的任意开覆盖存在一个勒贝格数。

解答: 设 $S \in E$ 的一个开覆盖,对于 $x \in E$,定义

$$h(x) = \inf\{d(A) \mid x \in A, \forall_{U \in S} (A \nsubseteq U)\},\$$

即所有包含 x 且不能被任何 S 中的元素覆盖的集合的直径的下确界。这里

$$d(A) = \sup_{x,y \in A} |x - y|$$

称为集合 A 的直径。根据定义, $h(x) \ge 0$,如果 h(x) = 0,那么很容易证明,这个 x 不能被 S 中的任何元素覆盖,这与 $x \in E$ 且 S 是 E 的开覆盖矛盾,所以我们有 h(x) > 0。

任取 $x,y\in E$,根据下确界的定义,对于任意的 $\epsilon>0$,存在一个集合 A 包含 x、A 不能被 S 中的元素覆盖、且满足

$$h(x) + \epsilon > d(A) > d(A \cup \{y\}) - |x - y|,$$

于是有

$$h(y) < d(A \cup \{y\}) < h(x) + \epsilon + |x - y|,$$

所以函数 h 在 E 上连续,因此存在最小值。注意,h(x) 永远大于零,所以它的最小值也大于零。接下来不难证明,任何一个比这个最小值小的正数都是开覆盖 S 的勒贝格数。

6. 设 $E \subseteq \mathbb{R}$ 是一个有界集,f 是 E 上的连续函数。若 E 可写为两个非空子集的并 $E = E_1 \cup E_2$,且满足:

- i) 若 x_0 既是 E_1 的极限点又是 E_2 的极限点,则 $x_0 \in E$;
- ii) f 在 E_1 和 E_2 上都一致连续。

求证: $f \in E$ 上一致连续。

解答: 课堂上已经证明过,有界集合 E 上的连续函数是一致连续的当且仅当它在 E 的所有极限点上的极限都存在且有限。设 x_0 是 E 的极限点,如果它是 E_1 的极限点但不是 E_2 的极限点,那么存在 x_0 的去心开邻域仅与 E_1 相交,于是,根据 f 在 E_1 上的一致连续性,f 在 x_0 处的极限存在。如果 x_0 是 E_2 的极限点但不是 E_1 的极限点,证明方法是类似的。最后,如果 x_0 是 E_1 、 E_2 公共的极限点,根据题目条件,f 在 x_0 处的极限就是 $f(x_0)$,所以也存在。因为 x_0 只能是以上三种情况之一,所以 f 一致连续。