数学分析(1)期末试题 卷 A 2015.01.16

一、(10分)求极限

$$\lim_{x\to 0} (\cos x)^{1/x^2}.$$

二、(10 分) 设函数 f 在区间 I 上二阶可导,且

$$f(x) \ge \frac{1}{e}, \quad f''(x) \ge 0, \quad \forall x \in I.$$

求证: $f(x)\log(f(x))$ 是 I 上的凸函数 (这里 \log 是以 e 为底的对数)。

- 三、(15 分) 设函数 f 在区间 [0,1] 上可导。假设 f 在 [0,1] 上有无限多个 互不相同的零点 x_1, x_2, x_3, \ldots 。求证: f 与 f' 有公共零点。
- 四、(15 分)设[a,b]为有界闭区间,函数f在[a,b]上连续。
 - (1) 设 $c \in (a,b)$ 并设 f 分别在 (a,c) 和 (c,b) 上可导。求证:存在 $\xi \in (a,c) \cup (c,b)$ 使得

$$|f(b) - f(b)| \le |f'(\xi)|(b - a).$$
 (*)

- (2) 一般地,设 $S = \{x_1, x_2, ..., x_n\} \subseteq (a, b)$,且 f 在 (a, b) S 上可导。求证:存在 $\xi \in (a, b) S$ 使得不等式 (*) 成立。
- 五、(15 分)设n为正整数。
 - (1) 设函数 $f \in C^{2n+1}(\mathbb{R})$ 满足 $f^{(k)}(x) > 0$, $x \in \mathbb{R}$, $0 \le k \le 2n+1$ 。 求证: f 的偶数次 Taylor 多项式恒正,即对任意的 $x \in \mathbb{R}$,有

$$P_{2n}(x) := f(0) + f'(0)x + \frac{f''(0)x^2}{2} + \dots + \frac{f^{(2n)}(0)x^{2n}}{(2n)!} > 0.$$

(提示: 对 $x \ge 0$ 和 x < 0 的情形分别讨论。)

(2) 求证:对任意的 $x \in \mathbb{R}$,有

$$1 + x + \frac{x^2}{2} + \dots + \frac{x^{2n}}{(2n)!} > 0.$$

六、 (15 分) 设函数 f 在 [0,1] 上二阶可导且 $M:=\sup_{x\in[0,1]}|f''(x)|<\infty$ 。求证:

$$|f'(x)| \le |f(1) - f(0)| + \frac{M}{2}, \quad \forall x \in [0, 1].$$

七、(10分)计算广义积分

$$\int_0^1 \frac{\mathrm{d}x}{6 \, x^{1/6} \, (x^{1/3} + x^{1/2})}.$$

八、(10 分)设 [a,b] 为有界闭区间,函数 f 在 [a,b] 上严格单调增且 $0 \le f(x) \le 1$, $\forall x \in [a,b]$ 。求证:

$$\lim_{n \to \infty} \int_{a}^{b} (f(x))^{n} dx = 0.$$

九、(附加题 10 分)设 $f(x) = \tan x - x$ 。

(1) 设 $0 < \beta_1 < \beta_2 < \beta_3 < \cdots$ 是 f(x) = 0 的所有正根,求证:

$$\lim_{n \to \infty} (\beta_n - n \,\pi) = \frac{\pi}{2}.$$

(2) 求证: 当 $n \neq m$ 时,

$$\int_0^1 \sin(\beta_n x) \sin(\beta_m x) dx = 0.$$