1. 若连续函数 $f : \mathbb{R} \to \mathbb{C}$ 在 $[-M, M]$ 以外为零，且其 Fourier 变换 \hat{f} 是绝对可积的，则 Fourier 反演公式的直观解释可按下述方式严格地证出。

i) 对任意的 $L > M$，可将 f 在 $[-L, L]$ 上的部分延拓为整个实轴上的周期为 $2L$ 的周期函数。求证：在 $[-L, L]$ 上有

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{\pi i \frac{n}{2L} x}, \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-\pi i \frac{n}{2L} x} dx = \frac{1}{2L} \hat{f}\left(\frac{n}{2L}\right).$$

ii) 若函数 F 连续且绝对可积，则

$$\int_{\mathbb{R}} F(\xi) d\xi = \lim_{K \to +\infty} \frac{1}{K} \sum_{n \in \mathbb{Z}} F\left(\frac{n}{K}\right).$$

iii) 由 i)、ii) 即可证明

$$f(x) = \int_{\mathbb{R}} \hat{f}(\xi) e^{2\pi i \xi x} d\xi.$$

解答：i）（此题条件有误，应改为 “\hat{f} 是 ε-慢速下降的”。）首先证明，f 的 Fourier 级数是绝对收敛的：

$$\sum_{n \in \mathbb{Z}} |c_n| = \sum_{n \in \mathbb{Z}} \left| \frac{1}{2L} \hat{f}\left(\frac{n}{2L}\right) \right| \leq \frac{1}{2L} \left(|\hat{f}(0)| + \sum_{n=1}^{\infty} \left(|\hat{f}\left(\frac{n}{2L}\right)| + |\hat{f}\left(-\frac{n}{2L}\right)| \right) \right)$$

$$< \frac{1}{2L} \left(|\hat{f}(0)| + \sum_{n=1}^{\infty} \frac{2A}{1 + \frac{n}{2L}} \right) < +\infty$$

由 Weierstrass 判别法可知 f 的 Fourier 级数收敛到一个连续函数，因为 f 连续。根据均方收敛性的推论，f 的 Fourier 级数收敛到它自己。

ii）（此题条件也应改为 “F 是 ε-慢速下降的”，否则右边的级数可能不收敛。）对任意的 $\varepsilon > 0$，存在一个 $R_0 > 0$，使得对任意的 $R \geq R_0$，有

$$\left| \int_{-R}^{R} F(\xi) d\xi - \int_{-R}^{R} F(\xi) d\xi \right| < \frac{\varepsilon}{3}.$$
设 $K > 1$，考虑如下和式:

$$
\left| \frac{1}{K} \sum_{n > RK} F \left(\frac{n}{K} \right) \right| \leq \frac{2}{K} \sum_{n > RK} \frac{A}{1 + |n|^{1+\varepsilon}}
$$

$$
< 2AK^\varepsilon \sum_{n > RK} \frac{1}{n^{1+\varepsilon}} < 2AK^\varepsilon \int_{RK-1}^{+\infty} \frac{dx}{x^{1+\varepsilon}}
$$

$$
= 2AK^\varepsilon \frac{1}{\varepsilon(RK - 1)^\varepsilon} = \frac{2A}{\varepsilon(R - 1)^\varepsilon} < \frac{2A}{\varepsilon(R - 1)^\varepsilon}
$$

当 R 充分大时，上式右边可以任意地小，所以我们不妨假设 R_0 已经充分大，使得对任意的 $R > R_0$，以及 $K > 1$，有

$$
\left| \frac{1}{K} \sum_{n \in \mathbb{Z}} F \left(\frac{n}{K} \right) - \frac{1}{K} \sum_{|n| \leq RK} F \left(\frac{n}{K} \right) \right| = \frac{1}{K} \sum_{|n| > RK} F \left(\frac{n}{K} \right) < \frac{\varepsilon_0}{3}.
$$

于是我们得到

$$
\left| \frac{1}{K} \sum_{n \in \mathbb{Z}} F \left(\frac{n}{K} \right) - \int_{-R}^{R} F(\xi) d\xi \right| \leq \frac{2\varepsilon_0}{3} + \frac{1}{K} \sum_{|n| \leq RK} F \left(\frac{n}{K} \right) - \int_{-R}^{R} F(\xi) d\xi,
$$

而右边的和式基本上可以解释为右边的积分的一个 Riemann 和（左右端点要稍作处理，细节略），于是不难证明，当 K 充分大时，上式右边小于 ε_0，所以所求极限成立。

iii)，由 i)，ii) 易得。 □

2. 固定一个 $\varepsilon > 0$，一个连续函数 $f : \mathbb{R} \to \mathbb{C}$ 叫做 ε-慢速下降的，如果存在 $A > 0$ 使得

$$
|f(x)| \leq \frac{A}{1 + |x|^{1+\varepsilon}}.
$$

所有这样的函数构成的集合记为 M_ε。求证:

i) M_ε 是一个线性空间。

ii) 若 $f(x) \in M_\varepsilon$，则对于 $\forall h \in \mathbb{R}$，$f(x - h) \in M_\varepsilon$。

iii) 若 $f(x) \in M_\varepsilon$，则对于 $\forall \delta \in \mathbb{R}$，$f(\delta x) \in M_\varepsilon$。

iv) 若 $f \in M_\varepsilon$，则 f 绝对可积（于是 \hat{f} 存在）。

v) 若 $f \in M_\varepsilon$，$\hat{f} \in M_\varepsilon$，则存在 $B > 0$，使得

$$
|f(x + h) - f(x)| \leq B |h|^\varepsilon.
$$

(即 ε-Hölder 连续。)

vi) 若 $f, g \in M_\varepsilon$，则 $f * g \in M_\varepsilon$。
解答：见第 10 次作业的解答。

3.

i) 若 \(f \) 是 \(\varepsilon \)-慢速下降的，则

\[
\int_{-R}^{R} \left(1 - \frac{\xi}{R} \right) \hat{f}(\xi) e^{2\pi i \xi x} d\xi = (f \ast \mathcal{F}_R)(x),
\]

其中 \(\mathcal{F}_R \) 是 \(\mathbb{R} \) 上的 Fejér 核:

\[
\mathcal{F}_R(y) = \begin{cases}
R \left(\frac{\sin \frac{\pi y R}{y}}{\pi y R} \right)^2, & y \neq 0; \\
R, & y = 0.
\end{cases}
\]

ii) 求证：当 \(R \to +\infty \) 时，\(f \ast \mathcal{F}_R \) 一致收敛到 \(f \)。

解答：i) 因为 \(f \) 是 \(\varepsilon \)-慢速下降的，所以 \(\hat{f}(\xi) \) 作为含参广义积分对于 \(\xi \in \mathbb{R} \) 一致收敛，所以有:

\[
\int_{-R}^{R} \left(1 - \frac{\xi}{R} \right) \hat{f}(\xi) e^{2\pi i \xi x} d\xi \]

\[
= \int_{-R}^{R} \left(1 - \frac{\xi}{R} \right) \left(\int_{\mathbb{R}} f(y) e^{-2\pi i \xi y} dy \right) e^{2\pi i \xi x} d\xi
\]

\[
= \int_{\mathbb{R}} f(y) dy \int_{-R}^{R} \left(1 - \frac{\xi}{R} \right) e^{2\pi i \xi (x-y)} d\xi
\]

\[
= \int_{\mathbb{R}} f(y) R \left(\frac{\sin \pi (x-y) R}{\pi (x-y) R} \right)^2 dy
\]

ii) 首先，利用换元法和一些已知的积分不难证明

\[
\int_{\mathbb{R}} F_R(y) dy = 1.
\]

接下来，对于 \(\delta > 0 \)，我们有

\[
\int_{|y| > \delta} F_R(y) dy = \int_{y > \delta} \frac{2 \sin^2 \frac{\pi y R}{y^2 R}}{\pi^2 y^2 R} dy = \int_{y > \delta} \frac{1 - \cos \frac{2 \pi y R}{y^2 R}}{\pi^2 y^2 R} dy
\]

\[
= \frac{1}{\pi^2 R \delta} - \int_{y > \delta} \frac{\cos \frac{2 \pi y R}{y^2 R}}{\pi^2 y^2 R} dy
\]

由 Riemann-Lebesgue 引理，当 \(R \to +\infty \) 时，上式右边趋于 0，所以 \(\{F_R\} \) 是一个好核。于是由好核的性质可知，\(f \ast \mathcal{F}_R \) 一致收敛到 \(f \)。

4. 在本题中，我们取 Fourier 变换和反变换为:

\[
\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i\xi x} dx,
\]

\[
f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) e^{i\xi x} d\xi.
\]
i) 求证: $h_0(x) = e^{-x^2/2}$ 的 Fourier 变换等于它自己。

ii) 定义函数空间

$$V = \{ p(x)h_0(x) \mid p \in \mathbb{C}[x] \},$$

则 V 是 Schwartz 空间 S 的子空间，并且是如下运算的不变子空间:

$$I : V \to V, \quad f(x) \mapsto f(x),$$
$$X : V \to V, \quad f(x) \mapsto xf(x),$$
$$D : V \to V, \quad f(x) \mapsto f'(x),$$
$$F : V \to V, \quad f(x) \mapsto \tilde{f}(x).$$

它们还满足如下关系:

$$ DX - XD = I, \quad FD = iXF, \quad FX = iDF.$$

iii) 定义算子

$$A = D + X, \quad A^\dagger = -D + X,$$

若 $f \in V$ 满足 $F(f) = \lambda f$，则

$$F(A(f)) = i\lambda A(f), \quad F(A^\dagger(f)) = -i\lambda A^\dagger(f).$$

iv) F 在 V 上的全部特征向量由 $h_n = (A^\dagger)^n(h_0)$ 给出，其特征值为 $(-i)^n$。

解答：i)、ii)、iii) 直接计算即可。对于 iv), 由 iii) 可知 h_n 显然是相应特征值的特征向量。注意 $\{h_n \mid n = 0, 1, 2, \ldots \}$ 构成 V 的一组基，所以 F 的特征向量全部由 h_n 的线性组合给出。□