From Witten conjecture to DVV's loop equation

Si-Qi Liu

April 4, 2014

In this note, I will show that the two conditions $(\mathrm{KdV}+\mathrm{SE})$ of the Witten conjecture imply Dijkgraaf-Verlinde-Verlinde's loop equation (see below for details).

Let $Z \in \mathbb{C}\left[\left[t_{0}, t_{1}, \ldots\right]\right]$ be the Witten-Kontsevich tau function, and

$$
F=\log Z=\sum_{g \geq 0} \hbar^{g-1} F_{g}
$$

be the corresponding free energy. The Witten conjecture [6] states that F is uniquely determined by the following two conditions:

- Let $u=\hbar \partial^{2} F$, where $\partial=\partial_{0}$, and $\partial_{k}=\frac{\partial}{\partial t_{k}}$. Define a collection of polynomials $R_{k}\left(u, u^{\prime}, u^{\prime \prime}, \ldots\right)$, where the prime stands for the derivative with respect to t_{0},

$$
\begin{equation*}
R_{0}=1, \quad\left(k+\frac{1}{2}\right) R_{k+1}^{\prime}=u R_{k}^{\prime}+\frac{1}{2} u^{\prime} R_{k}+\frac{\hbar}{8} R_{k}^{\prime \prime \prime} \tag{1}
\end{equation*}
$$

such that all $R_{k}(k \geq 1)$ contains no constant terms. Then u satisfies the following Korteweg-de Vries (KdV) hierarchy:

$$
\partial_{k} u=R_{k+1}^{\prime} .
$$

- F satisfies the following String Equation (SE)

$$
\begin{equation*}
\partial F=\frac{1}{2 \hbar} t_{0}^{2}+\sum_{k \geq 0} t_{k+1} \partial_{k} F . \tag{2}
\end{equation*}
$$

By definition, we have

$$
\begin{aligned}
& R_{1}=u \\
& R_{2}=\frac{u^{2}}{2}+\frac{\hbar}{12} u^{\prime \prime} \\
& R_{3}=\frac{u^{3}}{6}+\frac{\hbar}{24}\left(u^{\prime}\right)^{2}+\frac{\hbar}{12} u u^{\prime \prime}+\frac{\hbar^{2}}{240} u^{(4)}, \ldots
\end{aligned}
$$

To obtain these polynomials, one must integrate the right hand side of (1) with respect to t_{0}. An interesting question arises: why is the right hand side always a total derivative of a polynomial of $u, u^{\prime}, u^{\prime \prime}, \ldots$ with respect to t_{0} ?

Lemma 1 If we define the following generating function of R_{k}

$$
b(\lambda)=\sum_{k \geq 0} \frac{\Gamma(k+1 / 2)}{\lambda^{k+1 / 2}} R_{k}
$$

then it is determined by the following equation

$$
\begin{equation*}
(u-\lambda) b^{2}+\frac{\hbar}{8}\left(2 b b^{\prime \prime}-\left(b^{\prime}\right)^{2}\right)=-\pi . \tag{3}
\end{equation*}
$$

Proof: The recursion equation of R_{k} gives

$$
\begin{equation*}
(u-\lambda) b^{\prime}+\frac{u^{\prime}}{2} b+\frac{\hbar}{8} b^{\prime \prime \prime}=0 \tag{4}
\end{equation*}
$$

Times $2 b(\lambda)$ on the both sides, and then integrate with respect to t_{0}, one obtain

$$
(u-\lambda) b^{2}+\frac{\hbar}{8}\left(2 b b^{\prime \prime}-\left(b^{\prime}\right)^{2}\right)=C(\lambda)
$$

where $C(\lambda)$ is the generating function of integration constants. Note that all these constants are chozen as zero, so $C(\lambda)$ only has a leading term $-\pi$. The lemma is proved.

The two conditions of the Witten conjecture are equivalent to the Virasoro constraits for the Witten-Kontsevich tau function [1], that is

$$
\begin{equation*}
L_{m} Z=0, \quad m \geq-1 \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{-1}= & -\partial+\frac{1}{2 \hbar} t_{0}^{2}+\sum_{k \geq 0} t_{k+1} \partial_{k} \\
L_{0}= & -\frac{3}{2} \partial_{1}+\frac{1}{16}+\sum_{k \geq 0}\left(k+\frac{1}{2}\right) t_{k} \partial_{k}, \\
L_{m}= & -\frac{\Gamma(5 / 2+m)}{\Gamma(3 / 2)} \partial_{m+1}+\sum_{k \geq 0} \frac{\Gamma(m+k+3 / 2)}{\Gamma(k+1 / 2)} t_{k} \partial_{m+k} \\
& +\frac{\hbar}{2 \pi} \sum_{k+l=m-1} \Gamma(k+3 / 2) \Gamma(l+3 / 2) \partial_{k} \partial_{l}, \quad m \geq 1
\end{aligned}
$$

This equivalence is first proved by Dijkgraaf, H. Verlinde, and E. Verlinde in [1], but their original proof lacks some details. Getzler gave a full proof in [2] based on DVV's argument and Virasoro commuting relations. There are also other proofs: Goeree [3] and Kac-Schwartz [4] (based on vertex algebras), or La [5] (based on Lie-Bäcklund transformations). Here I will give another proof which use nothing but the properties of the function $b(\lambda)$. This proof can be regarded as a refinement of DVV's original argument: what we did is just to find out all constants of integration, that are omitted by DVV.

DVV introduced a generating function of all Virasoro constraints, which is called the loop equation for the Witten-Kontsevich tau function. Let $W(\lambda)$ be the following operator

$$
W(\lambda)=\sum_{k \geq 0} \frac{\Gamma(k+3 / 2)}{\lambda^{k+3 / 2}} \partial_{k},
$$

which is called the loop operator, and define

$$
J(\lambda)=\sum_{k \geq 0} \frac{\lambda^{k-1 / 2}}{\Gamma(k+1 / 2)} t_{k}
$$

and the dilaton shifted one $\tilde{J}(\lambda)=\left.J(\lambda)\right|_{t_{1} \rightarrow t_{1}-1}$, then the following generating function of Virasoro constraints

$$
\begin{equation*}
\mathcal{L}(\lambda)=\sum_{m \geq-1} \frac{1}{\lambda^{m+2}} \frac{L_{m} Z}{Z}=0 \tag{6}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
(\tilde{J}(\lambda) W(\lambda)(F))_{-}+\frac{\hbar}{2 \pi}\left(W(\lambda)^{2}(F)+W(\lambda)(F)^{2}\right)+\frac{t_{0}^{2}}{2 \hbar \lambda}+\frac{1}{16 \lambda^{2}}=0 \tag{7}
\end{equation*}
$$

where () _ means to take the negative part of a Laurent power series.
The main purpose of this note is to prove (7).
Lemma 2 Define the following polynomials

$$
B_{k}(\lambda)=\frac{1}{\Gamma(k+3 / 2)}\left(\lambda^{k+1 / 2} b(\lambda)\right)_{+}
$$

then the k-th $K d V$ equation $\partial_{k} u=R_{k+1}^{\prime}$ is equivalent to the compatibility condition of the following Lax pair:

$$
\begin{aligned}
\phi^{\prime \prime} & =2(\lambda-u) \phi, \\
\partial_{k} \phi & =\frac{1}{2} B_{k} \phi^{\prime}-\frac{1}{4} B_{k}^{\prime} \phi .
\end{aligned}
$$

Proof: Check the condition $\partial_{k}\left(\phi^{\prime \prime}\right)=\left(\partial_{k} \phi\right)^{\prime \prime}$.
Lemma 3 Let δ be a derivation that can act on $b(\lambda)$ and such that $[\delta, \partial]=0$, then we have the following identities:

$$
\begin{align*}
\left(1-\frac{\hbar}{8 \pi} b^{2} \partial b \partial \frac{1}{b}\right) \delta(b) & =\frac{1}{2 \pi} \delta(u-\lambda) b^{3}, \tag{8}\\
\left(1-\frac{\hbar}{8 \pi} \partial b \partial b\right) \delta\left(\frac{1}{b}\right) & =-\frac{1}{2 \pi} \delta(u-\lambda) b \tag{9}
\end{align*}
$$

Proof: Act δ on (3), times b, and then use (3) again.

Lemma 4

i)

$$
\partial_{k} b=\frac{1}{2}\left(B_{k} b^{\prime}-B_{k}^{\prime} b\right), \quad \partial_{k}\left(\frac{1}{b}\right)=\frac{1}{2}\left(\frac{B_{k}}{b}\right)^{\prime} .
$$

ii)

$$
\frac{\partial b}{\partial \lambda}+\frac{\partial b}{\partial u}=0 \quad\left(\Leftrightarrow \frac{\partial R_{k+1}}{\partial u}=R_{k}\right) .
$$

iii)

$$
\frac{\delta}{\delta u}\left(\frac{1}{b}\right)=-\frac{1}{2 \pi} b
$$

iv)

$$
\frac{\delta R_{k+1}}{\delta u}=\frac{\partial R_{k+1}}{\partial u}=R_{k}
$$

Proof: i) Let

$$
\partial_{k} b=\frac{1}{2}\left(B_{k} b^{\prime}-B_{k}^{\prime} b\right)+Z,
$$

then, by using (8), one can show that

$$
\left(1-\frac{\hbar}{8 \pi} b^{2} \partial b \partial \frac{1}{b}\right) Z=0
$$

so $Z=0$. ii) is trivial. iii) Choose an arbitrary flow $\partial_{t} u=X$, then (9) implies that

$$
\partial_{t}\left(\frac{1}{b}\right) \equiv-\frac{b}{2 \pi} X \quad(\bmod \operatorname{Im} \partial)
$$

which is exactly the defining condition of $\frac{\delta}{\delta u}\left(\frac{1}{b}\right)$. iv) The item iii) imples that every R_{k+1} is the variational derivative of another local functional, so we have $\frac{\delta R_{k+1}}{\delta u}=\frac{\partial R_{k+1}}{\partial u}$. The second identity comes from ii).

Lemma 5 We have

$$
\begin{aligned}
W(\mu) b(\lambda) & =\frac{b(\mu) b(\lambda)^{\prime}-b(\mu)^{\prime} b(\lambda)}{2(\mu-\lambda)}, \\
W(\mu)\left(\frac{1}{b(\lambda)}\right) & =\frac{1}{2(\mu-\lambda)}\left(\frac{b(\mu)}{b(\lambda)}\right)^{\prime}
\end{aligned}
$$

Proof: $\quad W(\mu) b(\lambda)$ and $W(\mu)(1 / b(\lambda))$ are just generating functions of $\partial_{k} b$ and $\partial_{k}(1 / b)$, which have been obtained in Lemma 4 i).

Lemma 6 The polynomials R_{k} 's satisfy the following identity:

$$
\partial_{k} R_{l+1}=\partial_{l} R_{k+1} .
$$

Proof: Because $W(\mu) b(\lambda)$ is symmetric with respect to λ, μ.

Lemma 7

$$
b(\mu)^{\prime} b(\lambda)=\frac{1}{\mu-\lambda}\left(-\pi \frac{b(\mu)}{b(\lambda)}+\frac{\hbar}{8} b(\lambda)\left(b(\lambda)\left(\frac{b(\mu)}{b(\lambda)}\right)^{\prime}\right)^{\prime}\right)^{\prime}
$$

Proof: Take $\delta=W(\mu)$, then use Lemma 3. Note that $W(\mu)(u)=b(\mu)^{\prime}$, the lemma is proved.

Lemma $8 \partial_{l} R_{k+1}$ is a total derivative of a polynomial of $u, u^{\prime}, u^{\prime \prime}, \ldots$ with respect to t_{0} for all $k, l \geq 0$.

Proof: Lemma 7 shows that the coefficients of $b(\mu)^{\prime} b(\lambda)$ are total derivatives, so do the coefficients of $W(\mu) b(\lambda)$ (see Lemma 5).

We define

$$
\Omega_{k l}=\partial^{-1}\left(\partial_{l} R_{k+1}\right),
$$

and take the integration constant to be zero. Then construct the following generating function

$$
\omega(\mu, \lambda)=\sum_{k, l \geq 0} \frac{\Gamma(k+3 / 2)}{\mu^{k+3 / 2}} \frac{\Gamma(l+3 / 2)}{\lambda^{l+3 / 2}} \Omega_{k l} .
$$

Lemma 9

$$
\begin{aligned}
\omega(\mu, \lambda)= & \frac{\pi}{2(\mu-\lambda)^{2}}\left(\frac{b(\mu)}{b(\lambda)}+\frac{b(\lambda)}{b(\mu)}-\sqrt{\frac{\lambda}{\mu}}-\sqrt{\frac{\mu}{\lambda}}\right) \\
& -\frac{\hbar}{4 b(\mu) b(\lambda)}\left(\frac{b(\mu) b(\lambda)^{\prime}-b(\mu)^{\prime} b(\lambda)}{2(\mu-\lambda)}\right)^{2}, \\
\omega(\mu, \lambda)= & \frac{\pi}{2(\mu-\lambda)^{2}}\left(\frac{(\mu-u)+(\lambda-u)}{\pi} b(\mu) b(\lambda)-\sqrt{\frac{\lambda}{\mu}}-\sqrt{\frac{\mu}{\lambda}}\right) \\
& -\frac{\hbar}{8(\mu-\lambda)^{2}}\left(b(\mu) b(\lambda)^{\prime \prime}-b(\mu)^{\prime} b(\lambda)^{\prime}+b(\mu)^{\prime \prime} b(\lambda)\right) .
\end{aligned}
$$

Proof: The first identity is just the integration of $W(\mu) b(\lambda)$, since $\omega(\mu, \lambda)^{\prime}=$ $W(\mu) b(\lambda)$. To compute this integration, we need Lemma 5 and 7. The integration constant is obtained by taking $u=u^{\prime}=u^{\prime \prime}=\cdots=0$. The second identity is obtained from the first one by using (3).

Lemma 10

$$
\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)(b(\mu))=b(\mu)^{\prime}+\partial_{\mu} b(\mu)
$$

Proof: Let $\delta=\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)(\cdot)$. According to the string equation, we have

$$
\delta(u-\mu)=u^{\prime}-1=\left(\partial+\partial_{\mu}\right)(u-\mu),
$$

then Lemma 3 implies $\delta(b(\mu))=\left(\partial+\partial_{\mu}\right)(b(\mu))$.

Lemma 11

$$
\operatorname{Res}_{\lambda=0} J(\lambda) b(\lambda)=u .
$$

Proof:

$$
\begin{aligned}
& W(\mu)\left(\operatorname{Res}_{\lambda=0} J(\lambda) b(\lambda)\right) \\
= & \operatorname{Res}_{\lambda=0} W(\mu)(J(\lambda)) b(\lambda)+\operatorname{Res}_{\lambda=0} J(\lambda) W(\mu)(b(\lambda)) \\
= & \operatorname{Res}_{\lambda=0}\left(\sum_{l \geq 0}(l+1 / 2) \lambda^{l-1 / 2} \mu^{-l-3 / 2}\right) b(\lambda)+\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)(b(\mu)) \\
= & -\partial_{\mu} b(\mu)+b(\mu)^{\prime}+\partial_{\mu} b(\mu)=W(\mu)(u),
\end{aligned}
$$

so we have $\operatorname{Res}_{\lambda=0} J(\lambda) b(\lambda)=u+C$. Then it is easy to see that $C=0$ by taking $t_{k}=0$.

Lemma 12 Suppose $P \in \mathbb{C}\left[\left[t_{0}, t_{1}, \ldots\right]\right]$, if

$$
\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)(P)=0
$$

then P is a constant.
Proof: We learned the idea of the following proof from [2]. Introduce a gradation on $\mathbb{C}\left[\left[t_{0}, t_{1}, \ldots\right]\right]$

$$
\operatorname{deg} t_{k}=k+\frac{1}{2}
$$

and rewrite P as a sum of homogeneous components

$$
P=\sum_{d \geq 0} P_{d}, \quad \text { where } \operatorname{deg} P_{d}=d
$$

Then define

$$
\begin{aligned}
l_{-1} & =\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)=\sum_{k \geq 0} t_{k+1} \partial_{k}, \\
l_{0} & =\sum_{k \geq 0}\left(k+\frac{1}{2}\right) t_{k} \partial_{k}, \\
l_{1} & =\sum_{k \geq 0}\left(k+\frac{1}{2}\right)\left(k+\frac{3}{2}\right) t_{k} \partial_{k+1} .
\end{aligned}
$$

The operators $\left\{l_{-1}, l_{0}, l_{1}\right\}$ form the basis of an $s l_{2}$ Lie algebra, and

$$
l_{-1}\left(P_{d}\right)=0, \quad l_{0}\left(P_{d}\right)=d P_{d}, \quad l_{1}^{m}\left(P_{d}\right)=0(\text { for } m>d)
$$

so P_{d} gives the highest weight vector of a finite dimentional representation of $s l_{2}$. On the other hand, it is easy to see that this representation doesn't contain any negative weight, so it must be the trivial representation, i.e. $l_{0}\left(P_{d}\right)=0$. So $P_{d}=0$ for any $d>0$.

Lemma 13

$$
b(\lambda)=\sqrt{\frac{\pi}{\lambda}}+W(\lambda)(\partial F) \quad\left(\Leftrightarrow R_{k+1}=\hbar \partial_{k} \partial(F)\right) .
$$

Proof: \quad Since $\partial_{l} R_{k+1}=\partial_{k} R_{l+1}$, there exists a function $G \in \mathbb{C}\left[\left[t_{0}, t_{1}, \ldots\right]\right]$, such that $R_{k+1}=\partial_{k} G$, so we have

$$
b(\lambda)=\sqrt{\frac{\pi}{\lambda}}+W(\lambda)(G)
$$

Then by using the string equation and Lemma 11, we obtain

$$
\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)(G-\partial F)=0
$$

so $G=\partial F+C$ (Lemma 12).

Lemma 14

$$
\omega(\mu, \lambda)=W(\mu) W(\lambda)(F) \quad\left(\Leftrightarrow \Omega_{k l}=\hbar \partial_{k} \partial_{l}(F)\right)
$$

Proof: Denote $\delta=\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)-\partial_{\mu}-\partial_{\lambda}-\partial$, then it is easy to see that

$$
\delta(u-\mu)=0, \quad \delta(u-\lambda)=0, \quad \delta(b(\mu))=0, \quad \delta(b(\lambda))=0,
$$

so we have

$$
\begin{equation*}
\delta(\omega(\mu, \lambda))=-\frac{\pi}{2(\mu-\lambda)^{2}} \delta\left(\sqrt{\frac{\lambda}{\mu}}+\sqrt{\frac{\mu}{\lambda}}\right)=-\frac{\pi}{4 \mu^{3 / 2} \lambda^{3 / 2}}, \tag{10}
\end{equation*}
$$

which is is equivalent to

$$
\sum_{i \geq 0} t_{i+1} \partial_{i}\left(\Omega_{k, l}\right)+\Omega_{k-1, l}+\Omega_{k, l-1}=\Omega_{k, l}^{\prime}-\delta_{k 0} \delta_{l 0}
$$

In particular, we have

$$
\left.\left(\Omega_{k-1, l}+\Omega_{k, l-1}\right)\right|_{t=0}=\left.\left(\Omega_{k, l}^{\prime}-\delta_{k 0} \delta_{l 0}\right)\right|_{t=0}
$$

On the other hand, by acting $\partial_{k} \partial_{l}$ on the string equation, we obtain that

$$
\begin{aligned}
& \left.\hbar\left(\partial_{k-1} \partial_{l}(F)+\partial_{k} \partial_{l-1}(F)\right)\right|_{t=0}=\left.\left(\hbar \partial_{k} \partial_{l} \partial(F)-\delta_{k 0} \delta_{l 0}\right)\right|_{t=0} \\
= & \left.\left(\partial_{k} R_{l+1}-\delta_{k 0} \delta_{l 0}\right)\right|_{t=0}=\left.\left(\Omega_{k, l}^{\prime}-\delta_{k 0} \delta_{l 0}\right)\right|_{t=0},
\end{aligned}
$$

so we have

$$
\left.\left(\Omega_{k-1, l}+\Omega_{k, l-1}\right)\right|_{t=0}=\left.\hbar\left(\partial_{k-1} \partial_{l}(F)+\partial_{k} \partial_{l-1}(F)\right)\right|_{t=0}
$$

Note that $\Omega_{k 0}=R_{k+1}=\hbar \partial_{k} \partial(F)$, so we have (by induction)

$$
\begin{equation*}
\left.\Omega_{k l}\right|_{t=0}=\left.\hbar \partial_{k} \partial_{l}(F)\right|_{t=0} \tag{11}
\end{equation*}
$$

The equation (10) also implies that

$$
\begin{aligned}
& \delta(\omega(\mu, \lambda))=-\frac{\pi}{4 \mu^{3 / 2} \lambda^{3 / 2}}=W(\mu) W(\lambda)\left(-\frac{t_{0}^{2}}{2}\right) \\
= & \hbar W(\mu) W(\lambda)(\delta(F))=\delta(\hbar W(\mu) W(\lambda)(F)) .
\end{aligned}
$$

Here we used the relation $[\delta, W(\mu) W(\lambda)]=0$, which is not hard to verify. Note that $\omega(\mu, \lambda)^{\prime}=(\hbar W(\mu) W(\lambda)(F))^{\prime}$, the above identity implies that

$$
\left(\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)-\partial_{\mu}-\partial_{\lambda}\right)(\omega(\mu, \lambda)-\hbar W(\mu) W(\lambda)(F))=0 .
$$

Define $Z_{k l}=\Omega_{k l}-\hbar \partial_{k} \partial_{l}(F)$, the above identity implies that

$$
\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)\left(Z_{k l}\right)=-Z_{k-1, l}-Z_{k, l-1} .
$$

We have known that $Z_{00}=0$. Suppose $Z_{k l}=0$ for all $k+l<N$, then for k, l satisfying $k+l=N$, we have

$$
\operatorname{Res}_{\lambda=0} J(\lambda) W(\lambda)\left(Z_{k l}\right)=0 .
$$

Lemma 12 implies that $Z_{k l}$ is a constant, then the identity (11) show that $Z_{k l}=0$. The lemma is proved.

Remark 15 According to Lemma 14, the function $\omega(\mu, \lambda)$ is in fact a kind of two-point function. One can define the n-point function $\omega\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in the similar way:

$$
\omega\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\hbar W\left(\lambda_{1}\right) \cdots W\left(\lambda_{n}\right)(F) .
$$

They can be computed by using Lemma 5, 9, and the fact that $W(\lambda)$ is a derivation:

$$
\begin{align*}
& \omega\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
= & \sum_{i=1}^{n-1}\left(\frac{\partial \omega\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)}{\partial b\left(\lambda_{i}\right)} W\left(\lambda_{n}\right)\left(b\left(\lambda_{i}\right)\right)\right. \\
& \left.\quad+\frac{\partial \omega\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)}{\partial b\left(\lambda_{i}\right)^{\prime}} W\left(\lambda_{n}\right)\left(b\left(\lambda_{i}\right)^{\prime}\right)\right) . \tag{12}
\end{align*}
$$

Here we used

$$
\begin{aligned}
W(\mu)\left(b(\lambda)^{\prime}\right) & =\frac{b(\mu) b(\lambda)^{\prime \prime}-b(\mu)^{\prime \prime} b(\lambda)}{2(\mu-\lambda)}, \text { where } \\
b(\lambda)^{\prime \prime} & =\frac{\left(b(\lambda)^{\prime}\right)^{2}}{2 b(\lambda)}+\frac{4}{\hbar}\left((\lambda-u) b(\lambda)-\frac{\pi}{b(\lambda)}\right),
\end{aligned}
$$

then one can show that $\omega\left(\lambda_{1}, \ldots, \lambda_{n}\right)(n \geq 3)$ is always a rational function of $\lambda_{i}, b\left(\lambda_{i}\right)$, and $b\left(\lambda_{i}\right)^{\prime}$ for $i=1, \ldots, n$. For example,

$$
\begin{aligned}
& \omega\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \\
= & \frac{b_{1} b_{1}^{\prime}\left(b_{2}^{2}-b_{3}^{2}\right)+b_{2} b_{2}^{\prime}\left(b_{3}^{2}-b_{1}^{2}\right)+b_{3} b_{3}^{\prime}\left(b_{1}^{2}-b_{2}^{2}\right)}{4\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{3}-\lambda_{1}\right) b_{1} b_{2} b_{3}} \\
& -\hbar \frac{\left(b_{1} b_{2}^{\prime}-b_{2} b_{1}^{\prime}\right)\left(b_{2} b_{3}^{\prime}-b_{3} b_{2}^{\prime}\right)\left(b_{3} b_{1}^{\prime}-b_{1} b_{3}^{\prime}\right)}{32\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{3}-\lambda_{1}\right) b_{1} b_{2} b_{3}},
\end{aligned}
$$

where $b_{i}=b\left(\lambda_{i}\right), b_{i}^{\prime}=b\left(\lambda_{i}\right)^{\prime}$ for $i=1,2,3$. The initial value $\left.\omega\right|_{t=0}$ of the n point function $\omega\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ also appeared in [7] (up to a certain factor), so we conjecture that there exist certian recurtion relations of Eynard-Orantin's type [7] for the genues expansion of $\omega\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

We are ready to prove DVV's loop equation (7). First we prove $L_{0}(Z)=0$, which gives us a very nice gradation for everything. Then we will use a similar method and this gradation to prove the whole Virasoro constraints, i.e. $\mathcal{L}(\lambda)=0$, where

$$
\mathcal{L}(\lambda)=(\tilde{J}(\lambda) W(\lambda)(F))_{-}+\frac{\hbar}{2 \pi}\left(W(\lambda)^{2}(F)+W(\lambda)(F)^{2}\right)+\frac{t_{0}^{2}}{2 \hbar \lambda}+\frac{1}{16 \lambda^{2}}
$$

Recall that $\tilde{J}(\lambda)=\left.J(\lambda)\right|_{t_{1} \rightarrow t_{1}-1}$. We also denote $\tilde{t}_{k}=t_{k}-\delta_{k 1}$.
Lemma 16 The 0-th Virasoro constraint $L_{0}(Z)=0$ holds, i.e.

$$
\operatorname{Res}_{\lambda=0} \lambda \tilde{J}(\lambda) W(\lambda)(F)+\frac{1}{16}=0
$$

Proof: We have known from Lemma 11 that $\operatorname{Res}_{\lambda=0} \tilde{J}(\lambda) b(\lambda)=0$, which implies $\operatorname{Res}_{\lambda=0} \tilde{J}(\lambda) b(\lambda)^{\prime}=-1$, then by using the identity

$$
(\lambda-\mu) W(\lambda) b(\mu)=\frac{1}{2}\left(b(\lambda) b(\mu)^{\prime}-b(\lambda)^{\prime} b(\mu)\right)
$$

we obtain

$$
\operatorname{Res}_{\lambda=0} \lambda \tilde{J}(\lambda) W(\lambda)(b(\mu))=\mu \partial_{\mu} b(\mu)+\frac{1}{2} b(\mu),
$$

or equivalently,

$$
\sum_{k \geq 0}\left(k+\frac{1}{2}\right) \tilde{t}_{k} \partial_{k}(b(\mu))-\mu \partial_{\mu} b(\mu)=\frac{1}{2} b(\mu),
$$

which means that, if we adopt

$$
\operatorname{deg} \tilde{t}_{k}=k+\frac{1}{2}, \quad \operatorname{deg} \mu=\operatorname{deg} \lambda=-1
$$

then $\operatorname{deg} b(\mu)=\operatorname{deg} b(\lambda)=1 / 2$. According to Lemma $9, \omega(\lambda, \mu)$ has degree 2, so we have

$$
\operatorname{Res}_{\lambda=0} \lambda \tilde{J}(\lambda) W(\lambda)\left(\omega\left(\mu_{1}, \mu_{2}\right)\right)=\left(\mu_{1} \partial_{\mu_{1}}+\mu_{2} \partial_{\mu_{2}}+2\right) \omega\left(\mu_{1}, \mu_{2}\right)
$$

This equation can be also written as

$$
W\left(\mu_{1}\right) W\left(\mu_{2}\right)\left(\operatorname{Res}_{\lambda=0} \lambda \tilde{J}(\lambda) W(\lambda)(F)\right)=0
$$

so there exist constants $C, c_{k}(k=0,1,2, \ldots)$ such that

$$
\operatorname{Res}_{\lambda=0} \lambda \tilde{J}(\lambda) W(\lambda)(F)=C+\sum_{k \geq 0} c_{k} t_{k}
$$

According to the next lemma (Lemma 17), we have

$$
\begin{aligned}
C & =-\left.\frac{3}{2} \partial_{1} F\right|_{t=0}=-\frac{1}{16} \\
c_{k} & =\left.\left(\left(k+\frac{1}{2}\right) \partial_{k} F-\frac{3}{2} \partial_{1} \partial_{k} F\right)\right|_{t=0}=0 .
\end{aligned}
$$

The lemma is proved.
Lemma 17 For $g \geq 1$, we have

$$
\left.\partial_{3 g-2}(\hbar F)\right|_{t=0}=\frac{1}{g!}\left(\frac{\hbar}{24}\right)^{g},\left.\quad \partial_{1} \partial_{3 g-2}(\hbar F)\right|_{t=0}=\frac{2 g-1}{g!}\left(\frac{\hbar}{24}\right)^{g},
$$

and $\left.\partial_{k} F\right|_{t=0}=\left.\partial_{1} \partial_{k} F\right|_{t=0}=0$ when $3 \nmid k+2$.
Proof: These intersection numbers are well-known. Here we give a proof based on the Witten conjecture. According to the string equation, we have

$$
\begin{aligned}
& \left.\partial_{k}(\hbar F)\right|_{t=0}=\left.\partial_{k+1} \partial(\hbar F)\right|_{t=0}=\left.R_{k+2}\right|_{t=0}, \\
& \left.\partial_{1} \partial_{k}(\hbar F)\right|_{t=0}=\left.\left(\partial_{1} R_{k+2}-R_{k+2}\right)\right|_{t=0},
\end{aligned}
$$

so we only need to compute $\left.b(\lambda)\right|_{t=0}$, and $\left.\partial_{1} b(\lambda)\right|_{t=0}$.
Let $\tilde{\beta}(\lambda, x)=b(\lambda)_{t_{0}=x, t_{1}=t_{2}=\cdots=0}$, then $\tilde{\beta}(\lambda, x)$ satisfies

$$
(x-\lambda) \tilde{\beta}^{2}+\frac{\hbar}{8}\left(2 \tilde{\beta} \tilde{\beta}_{x x}-\tilde{\beta}_{x}^{2}\right)=-\pi, \quad \tilde{\beta}_{x}+\tilde{\beta}_{\lambda}=0
$$

so we have

$$
(x-\lambda) \tilde{\beta}^{2}+\frac{\hbar}{8}\left(2 \tilde{\beta} \tilde{\beta}_{\lambda \lambda}-\tilde{\beta}_{\lambda}^{2}\right)=-\pi .
$$

Let $\beta(\lambda)=\left.b(\lambda)\right|_{t=0}=\tilde{\beta}(\lambda, 0)$, then $\beta(\lambda)$ satisfies

$$
\begin{equation*}
\lambda \beta^{2}-\frac{\hbar}{8}\left(2 \beta \beta_{\lambda \lambda}-\beta_{\lambda}^{2}\right)=\pi \tag{13}
\end{equation*}
$$

By acting ∂_{λ} again, we have

$$
\begin{equation*}
2 \lambda \beta_{\lambda}+\beta=\frac{\hbar}{4} \beta_{\lambda \lambda \lambda} . \tag{14}
\end{equation*}
$$

From (13) and (14) we can obtain,

$$
\beta(\lambda)=\sum_{g \geq 0} \frac{\Gamma(3 g+1 / 2)}{\lambda^{3 g+1 / 2}}\left(\frac{1}{g!}\left(\frac{\hbar}{24}\right)^{g}\right) .
$$

According to Lemma 4,

$$
\partial_{1} b(\lambda)=\frac{1}{3}\left((2 \lambda+u) b(\lambda)^{\prime}-u^{\prime} b(\lambda)\right),
$$

so we have

$$
\begin{aligned}
\left.\partial_{1} b(\lambda)\right|_{t=0} & =\left.\frac{1}{3}\left((2 \lambda+u) b(\lambda)^{\prime}-u^{\prime} b(\lambda)\right)\right|_{t=0}=\frac{1}{3}\left(\left.\left(2 \lambda b(\lambda)^{\prime}-b(\lambda)\right)\right|_{t=0}\right. \\
& =-\frac{1}{3}\left(\left(2 \lambda \beta_{\lambda}(\lambda)+\beta(\lambda)\right)=\sum_{g \geq 0} \frac{\Gamma(3 g+1 / 2)}{\lambda^{3 g+1 / 2}}\left(\frac{2 g}{g!}\left(\frac{\hbar}{24}\right)^{g}\right) .\right.
\end{aligned}
$$

The lemma is proved.
Lemma 18 Let $\mathcal{K}(\lambda)=\mathcal{L}(\lambda)^{\prime}$, then

$$
\mathcal{K}(\lambda)=(\tilde{J}(\lambda) b(\lambda))_{-}+\frac{\hbar}{\pi} W(\lambda)(F) b(\lambda)+\frac{\hbar}{2 \pi} W(\lambda)(b(\lambda))=0
$$

Proof: The expression of $\mathcal{K}(\lambda)$ is easy to obtain, so we only prove that it vanishes. Considering $W(\mu)(\mathcal{K}(\lambda))$

$$
\begin{aligned}
& W(\mu)(\mathcal{K}(\lambda)) \\
= & (W(\mu)(\tilde{J}(\lambda)) b(\lambda))_{-}+(\tilde{J}(\lambda) W(\mu)(b(\lambda)))_{-} \\
& +\frac{\hbar}{\pi} \omega(\mu, \lambda) b(\lambda)+\frac{\hbar}{\pi} W(\lambda)(F) \omega(\mu, \lambda)^{\prime} \\
& +\frac{\hbar}{2 \pi} W(\mu) W(\lambda)(b(\lambda)),
\end{aligned}
$$

one can obtain that

$$
\begin{aligned}
& (\lambda-\mu)^{2}(W(\mu)(\tilde{J}(\lambda)) b(\lambda)) \\
= & \frac{1}{2}\left(\sqrt{\frac{\lambda}{\mu}}+\sqrt{\frac{\mu}{\lambda}}\right) b(\lambda)-(\lambda-\mu) \partial_{\mu} b(\mu)-b(\mu)
\end{aligned}
$$

and

$$
\begin{aligned}
& (\lambda-\mu)(\tilde{J}(\lambda) W(\mu)(b(\lambda)))_{-} \\
= & \partial_{\mu} b(\mu)+\frac{1}{2}\left(b(\mu)^{\prime} \mathcal{K}(\lambda)-b(\mu) \mathcal{K}(\lambda)^{\prime}\right) \\
& +\frac{\hbar}{2 \pi} b(\mu) b(\lambda)^{2}-\frac{\hbar}{2 \pi} W(\lambda)(F)\left(b(\lambda) b(\mu)^{\prime}-b(\lambda)^{\prime} b(\mu)\right) \\
& -\frac{\hbar}{4 \pi}\left(b(\mu)^{\prime} W(\lambda)(b(\lambda))-b(\mu) W(\lambda)\left(b(\lambda)^{\prime}\right)\right),
\end{aligned}
$$

and

$$
W(\mu) W(\lambda)(b(\lambda))=W(\lambda) W(\mu)(b(\lambda))=W(\lambda)\left(\frac{b(\lambda) b(\mu)^{\prime}-b(\lambda)^{\prime} b(\mu)}{2(\lambda-\mu)}\right)
$$

Then, after a lenghy computation, one can show that

$$
W(\mu)(\mathcal{K}(\lambda))=\frac{b(\mu)^{\prime} \mathcal{K}(\lambda)-b(\mu) \mathcal{K}(\lambda)^{\prime}}{2(\lambda-\mu)} .
$$

The left hand side is well-defined when $\mu=\lambda$, so we have

$$
b(\lambda)^{\prime} \mathcal{K}(\lambda)=b(\lambda) \mathcal{K}(\lambda)^{\prime}
$$

then one can show that

$$
W(\mu)\left(\frac{\mathcal{K}(\lambda)}{b(\lambda)}\right)=0
$$

so there exists $C(\lambda)$ such that $\mathcal{K}(\lambda)=C(\lambda) b(\lambda)$. On the other hand (see the proof of Lemma 16), $\operatorname{deg} b(\lambda)=1 / 2, \operatorname{deg} \mathcal{K}(\lambda)=3 / 2$, so $\operatorname{deg} C(\lambda)=1$, i.e. $C(\lambda)=c / \lambda$. Then it is easy to show that $c=0$ by checking the leading term of $\mathcal{K}(\lambda)$.

Theorem 19 The DVV's loop equation holds true, i.e. $\mathcal{L}(\lambda)=0$.
Proof: The idea is very similar to the proof of Lemma 18. We first consider $(\lambda-\mu)^{2} W(\mu)(\mathcal{L}(\lambda))$. After a lengthy computation, one can show that $W(\mu)(\mathcal{L}(\lambda))=0$, so $\mathcal{L}(\lambda)=C(\lambda)$. Note that $\operatorname{deg} \mathcal{L}(\lambda)=2$, so $\mathcal{L}(\lambda)=c / \lambda^{2}$. Then Lemma 16 implies that $c=0$. The theorem is proved.

References

[1] Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik. Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity. Nuclear Phys. B 348 (1991), no. 3, 435-456.
[2] Getzler, Ezra. The Virasoro conjecture for Gromov-Witten invariants. Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 147-176, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999.
[3] Goeree, Jacob. W-constraints in 2D quantum gravity. Nuclear Phys. B 358 (1991), no. 3, 737-757.
[4] Kac, Victor; Schwarz, Albert. Geometric interpretation of the partition function of 2D gravity. Phys. Lett. B 257 (1991), no. 3-4, 329-334.
[5] La, HoSeong. Geometry of Virasoro constraints in nonperturbative 2-d quantum gravity. Comm. Math. Phys. 140 (1991), no. 3, 569-588.
[6] Witten, Edward. Two-dimensional gravity and intersection theory on moduli space. Surveys in differential geometry (Cambridge, MA, 1990), 243310, Lehigh Univ., Bethlehem, PA, 1991.
[7] Zhou, Jian. Topological recursions of Eynard-Orantin type for intersection numbers on moduli spaces of curves. Lett. Math. Phys. 103 (2013), no. 11, 1191-1206.

