
From Witten conjecture to DVV’s loop equation

Si-Qi Liu

April 4, 2014

In this note, I will show that the two conditions (KdV+SE) of the Wit-
ten conjecture imply Dijkgraaf-Verlinde-Verlinde’s loop equation (see below for
details).

Let Z ∈ C[[t0, t1, . . . ]] be the Witten-Kontsevich tau function, and

F = logZ =
∑
g≥0

~g−1Fg

be the corresponding free energy. The Witten conjecture [6] states that F is
uniquely determined by the following two conditions:

• Let u = ~ ∂2F , where ∂ = ∂0, and ∂k = ∂
∂tk

. Define a collection of

polynomials Rk(u, u′, u′′, . . . ), where the prime stands for the derivative
with respect to t0,

R0 = 1, (k +
1

2
)R′k+1 = uR′k +

1

2
u′Rk +

~
8
R′′′k , (1)

such that all Rk (k ≥ 1) contains no constant terms. Then u satisfies the
following Korteweg-de Vries (KdV) hierarchy:

∂ku = R′k+1.

• F satisfies the following String Equation (SE)

∂F =
1

2~
t20 +

∑
k≥0

tk+1∂kF. (2)

By definition, we have

R1 = u,

R2 =
u2

2
+

~
12
u′′,

R3 =
u3

6
+

~
24

(u′)2 +
~
12
uu′′ +

~2

240
u(4), . . .

To obtain these polynomials, one must integrate the right hand side of (1) with
respect to t0. An interesting question arises: why is the right hand side always
a total derivative of a polynomial of u, u′, u′′, . . . with respect to t0?
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Lemma 1 If we define the following generating function of Rk

b(λ) =
∑
k≥0

Γ(k + 1/2)

λk+1/2
Rk,

then it is determined by the following equation

(u− λ)b2 +
~
8

(
2 b b′′ − (b′)2

)
= −π. (3)

Proof: The recursion equation of Rk gives

(u− λ)b′ +
u′

2
b+

~
8
b′′′ = 0. (4)

Times 2 b(λ) on the both sides, and then integrate with respect to t0, one obtain

(u− λ)b2 +
~
8

(
2 b b′′ − (b′)2

)
= C(λ),

where C(λ) is the generating function of integration constants. Note that all
these constants are chozen as zero, so C(λ) only has a leading term −π. The
lemma is proved. �

The two conditions of the Witten conjecture are equivalent to the Virasoro
constraits for the Witten-Kontsevich tau function [1], that is

LmZ = 0, m ≥ −1, (5)

where

L−1 =− ∂ +
1

2~
t20 +

∑
k≥0

tk+1∂k,

L0 =− 3

2
∂1 +

1

16
+
∑
k≥0

(
k +

1

2

)
tk∂k,

Lm =− Γ(5/2 +m)

Γ(3/2)
∂m+1 +

∑
k≥0

Γ(m+ k + 3/2)

Γ(k + 1/2)
tk∂m+k

+
~

2π

∑
k+l=m−1

Γ(k + 3/2)Γ(l + 3/2)∂k∂l, m ≥ 1.

This equivalence is first proved by Dijkgraaf, H. Verlinde, and E. Verlinde
in [1], but their original proof lacks some details. Getzler gave a full proof in [2]
based on DVV’s argument and Virasoro commuting relations. There are also
other proofs: Goeree [3] and Kac-Schwartz [4] (based on vertex algebras), or
La [5] (based on Lie-Bäcklund transformations). Here I will give another proof
which use nothing but the properties of the function b(λ). This proof can be
regarded as a refinement of DVV’s original argument: what we did is just to
find out all constants of integration, that are omitted by DVV.

DVV introduced a generating function of all Virasoro constraints, which is
called the loop equation for the Witten-Kontsevich tau function. Let W (λ) be
the following operator

W (λ) =
∑
k≥0

Γ(k + 3/2)

λk+3/2
∂k,
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which is called the loop operator, and define

J(λ) =
∑
k≥0

λk−1/2

Γ(k + 1/2)
tk,

and the dilaton shifted one J̃(λ) = J(λ)|t1→t1−1, then the following generating
function of Virasoro constraints

L(λ) =
∑
m≥−1

1

λm+2

LmZ

Z
= 0 (6)

can be written as(
J̃(λ)W (λ)(F )

)
−

+
~

2π

(
W (λ)2(F ) +W (λ)(F )2

)
+

t20
2 ~λ

+
1

16λ2
= 0, (7)

where ( )− means to take the negative part of a Laurent power series.
The main purpose of this note is to prove (7).

Lemma 2 Define the following polynomials

Bk(λ) =
1

Γ(k + 3/2)

(
λk+1/2b(λ)

)
+
,

then the k-th KdV equation ∂k u = R′k+1 is equivalent to the compatibility con-
dition of the following Lax pair:

φ′′ = 2(λ− u)φ,

∂kφ =
1

2
Bkφ

′ − 1

4
B′kφ.

Proof: Check the condition ∂k(φ′′) = (∂kφ)′′. �

Lemma 3 Let δ be a derivation that can act on b(λ) and such that [δ, ∂] = 0,
then we have the following identities:(

1− ~
8π
b2 ∂ b ∂

1

b

)
δ(b) =

1

2π
δ(u− λ)b3, (8)(

1− ~
8π
∂ b ∂ b

)
δ(

1

b
) = − 1

2π
δ(u− λ)b. (9)

Proof: Act δ on (3), times b, and then use (3) again. �

Lemma 4
i)

∂kb =
1

2
(Bk b

′ −B′k b) , ∂k

(
1

b

)
=

1

2

(
Bk
b

)′
.

ii)
∂b

∂λ
+
∂b

∂u
= 0

(
⇔ ∂Rk+1

∂u
= Rk

)
.

iii)
δ

δu

(
1

b

)
= − 1

2π
b

iv)
δRk+1

δu
=
∂Rk+1

∂u
= Rk.
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Proof: i) Let

∂kb =
1

2
(Bk b

′ −B′k b) + Z,

then, by using (8), one can show that(
1− ~

8π
b2 ∂ b ∂

1

b

)
Z = 0,

so Z = 0. ii) is trivial. iii) Choose an arbitrary flow ∂t u = X, then (9) implies
that

∂t

(
1

b

)
≡ − b

2π
X (mod Im ∂),

which is exactly the defining condition of δ
δu

(
1
b

)
. iv) The item iii) imples that

every Rk+1 is the variational derivative of another local functional, so we have
δRk+1

δu = ∂Rk+1

∂u . The second identity comes from ii). �

Lemma 5 We have

W (µ)b(λ) =
b(µ)b(λ)′ − b(µ)′b(λ)

2(µ− λ)
,

W (µ)

(
1

b(λ)

)
=

1

2(µ− λ)

(
b(µ)

b(λ)

)′
.

Proof: W (µ)b(λ) and W (µ) (1/b(λ)) are just generating functions of ∂kb and
∂k(1/b), which have been obtained in Lemma 4 i). �

Lemma 6 The polynomials Rk’s satisfy the following identity:

∂kRl+1 = ∂lRk+1.

Proof: Because W (µ)b(λ) is symmetric with respect to λ, µ. �

Lemma 7

b(µ)′b(λ) =
1

µ− λ

(
−π b(µ)

b(λ)
+

~
8
b(λ)

(
b(λ)

(
b(µ)

b(λ)

)′)′)′
Proof: Take δ = W (µ), then use Lemma 3. Note that W (µ)(u) = b(µ)′, the
lemma is proved. �

Lemma 8 ∂lRk+1 is a total derivative of a polynomial of u, u′, u′′, . . . with
respect to t0 for all k, l ≥ 0.

Proof: Lemma 7 shows that the coefficients of b(µ)′b(λ) are total derivatives,
so do the coefficients of W (µ)b(λ) (see Lemma 5). �

We define
Ωkl = ∂−1(∂lRk+1),

and take the integration constant to be zero. Then construct the following
generating function

ω(µ, λ) =
∑
k,l≥0

Γ(k + 3/2)

µk+3/2

Γ(l + 3/2)

λl+3/2
Ωkl.
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Lemma 9

ω(µ, λ) =
π

2(µ− λ)2

(
b(µ)

b(λ)
+
b(λ)

b(µ)
−

√
λ

µ
−
√
µ

λ

)

− ~
4 b(µ) b(λ)

(
b(µ)b(λ)′ − b(µ)′b(λ)

2(µ− λ)

)2

,

ω(µ, λ) =
π

2(µ− λ)2

(
(µ− u) + (λ− u)

π
b(µ)b(λ)−

√
λ

µ
−
√
µ

λ

)

− ~
8(µ− λ)2

(b(µ)b(λ)′′ − b(µ)′b(λ)′ + b(µ)′′b(λ)) .

Proof: The first identity is just the integration of W (µ)b(λ), since ω(µ, λ)′ =
W (µ)b(λ). To compute this integration, we need Lemma 5 and 7. The integra-
tion constant is obtained by taking u = u′ = u′′ = · · · = 0. The second identity
is obtained from the first one by using (3). �

Lemma 10
Resλ=0J(λ)W (λ)(b(µ)) = b(µ)′ + ∂µb(µ).

Proof: Let δ = Resλ=0J(λ)W (λ)(·). According to the string equation, we
have

δ(u− µ) = u′ − 1 = (∂ + ∂µ)(u− µ),

then Lemma 3 implies δ(b(µ)) = (∂ + ∂µ)(b(µ)). �

Lemma 11
Resλ=0J(λ)b(λ) = u.

Proof:

W (µ) (Resλ=0J(λ)b(λ))

=Resλ=0W (µ)(J(λ))b(λ) + Resλ=0J(λ)W (µ)(b(λ))

=Resλ=0

∑
l≥0

(l + 1/2)λl−1/2µ−l−3/2

 b(λ) + Resλ=0J(λ)W (λ)(b(µ))

=− ∂µb(µ) + b(µ)′ + ∂µb(µ) = W (µ)(u),

so we have Resλ=0J(λ)b(λ) = u+C. Then it is easy to see that C = 0 by taking
tk = 0. �

Lemma 12 Suppose P ∈ C[[t0, t1, . . . ]], if

Resλ=0J(λ)W (λ)(P ) = 0,

then P is a constant.

Proof: We learned the idea of the following proof from [2]. Introduce a
gradation on C[[t0, t1, . . . ]]

deg tk = k +
1

2
,
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and rewrite P as a sum of homogeneous components

P =
∑
d≥0

Pd, where degPd = d.

Then define

l−1 =Resλ=0J(λ)W (λ) =
∑
k≥0

tk+1∂k,

l0 =
∑
k≥0

(k +
1

2
)tk∂k,

l1 =
∑
k≥0

(k +
1

2
)(k +

3

2
)tk∂k+1.

The operators {l−1, l0, l1} form the basis of an sl2 Lie algebra, and

l−1(Pd) = 0, l0(Pd) = dPd, lm1 (Pd) = 0 (for m > d),

so Pd gives the highest weight vector of a finite dimentional representation of
sl2. On the other hand, it is easy to see that this representation doesn’t contain
any negative weight, so it must be the trivial representation, i.e. l0(Pd) = 0. So
Pd = 0 for any d > 0. �

Lemma 13

b(λ) =

√
π

λ
+W (λ)(∂F ) (⇔ Rk+1 = ~ ∂k∂(F )) .

Proof: Since ∂lRk+1 = ∂kRl+1, there exists a function G ∈ C[[t0, t1, . . . ]],
such that Rk+1 = ∂kG, so we have

b(λ) =

√
π

λ
+W (λ)(G).

Then by using the string equation and Lemma 11, we obtain

Resλ=0J(λ)W (λ) (G− ∂F ) = 0,

so G = ∂F + C (Lemma 12). �

Lemma 14

ω(µ, λ) = W (µ)W (λ)(F ) (⇔ Ωkl = ~ ∂k∂l(F )) .

Proof: Denote δ = Resλ=0J(λ)W (λ)−∂µ−∂λ−∂, then it is easy to see that

δ(u− µ) = 0, δ(u− λ) = 0, δ(b(µ)) = 0, δ(b(λ)) = 0,

so we have

δ(ω(µ, λ)) = − π

2(µ− λ)2
δ

(√
λ

µ
+

√
µ

λ

)
= − π

4µ3/2λ3/2
, (10)
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which is is equivalent to∑
i≥0

ti+1∂i(Ωk,l) + Ωk−1,l + Ωk,l−1 = Ω′k,l − δk0δl0.

In particular, we have

(Ωk−1,l + Ωk,l−1) |t=0 =
(
Ω′k,l − δk0δl0

)
|t=0.

On the other hand, by acting ∂k∂l on the string equation, we obtain that

~ (∂k−1∂l(F ) + ∂k∂l−1(F )) |t=0 = (~ ∂k∂l∂(F )− δk0δl0) |t=0

= (∂kRl+1 − δk0δl0) |t=0 =
(
Ω′k,l − δk0δl0

)
|t=0,

so we have

(Ωk−1,l + Ωk,l−1) |t=0 = ~ (∂k−1∂l(F ) + ∂k∂l−1(F )) |t=0.

Note that Ωk0 = Rk+1 = ~ ∂k∂(F ), so we have (by induction)

Ωkl|t=0 = ~ ∂k∂l(F )|t=0. (11)

The equation (10) also implies that

δ(ω(µ, λ)) = − π

4µ3/2λ3/2
= W (µ)W (λ)

(
− t

2
0

2

)
=~W (µ)W (λ)(δ(F )) = δ(~W (µ)W (λ)(F )).

Here we used the relation [δ,W (µ)W (λ)] = 0, which is not hard to verify. Note
that ω(µ, λ)′ = (~W (µ)W (λ)(F ))′, the above identity implies that

(Resλ=0J(λ)W (λ)− ∂µ − ∂λ) (ω(µ, λ)− ~W (µ)W (λ)(F )) = 0.

Define Zkl = Ωkl − ~ ∂k∂l(F ), the above identity implies that

Resλ=0J(λ)W (λ)(Zkl) = −Zk−1,l − Zk,l−1.

We have known that Z00 = 0. Suppose Zkl = 0 for all k + l < N , then for k, l
satisfying k + l = N , we have

Resλ=0J(λ)W (λ)(Zkl) = 0.

Lemma 12 implies that Zkl is a constant, then the identity (11) show that
Zkl = 0. The lemma is proved. �

Remark 15 According to Lemma 14, the function ω(µ, λ) is in fact a kind of
two-point function. One can define the n-point function ω(λ1, . . . , λn) in the
similar way:

ω(λ1, . . . , λn) = ~W (λ1) · · ·W (λn)(F ).

They can be computed by using Lemma 5, 9, and the fact that W (λ) is a deriva-
tion:

ω(λ1, . . . , λn)

=

n−1∑
i=1

(
∂ω(λ1, . . . , λn−1)

∂b(λi)
W (λn)(b(λi))

+
∂ω(λ1, . . . , λn−1)

∂b(λi)′
W (λn)(b(λi)

′)

)
. (12)
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Here we used

W (µ)(b(λ)′) =
b(µ)b(λ)′′ − b(µ)′′b(λ)

2(µ− λ)
, where

b(λ)′′ =
(b(λ)′)2

2b(λ)
+

4

~

(
(λ− u)b(λ)− π

b(λ)

)
,

then one can show that ω(λ1, . . . , λn) (n ≥ 3) is always a rational function of
λi, b(λi), and b(λi)

′ for i = 1, . . . , n. For example,

ω(λ1, λ2, λ3)

=
b1b
′
1(b22 − b23) + b2b

′
2(b23 − b21) + b3b

′
3(b21 − b22)

4(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)b1b2b3

− ~
(b1b

′
2 − b2b′1)(b2b

′
3 − b3b′2)(b3b

′
1 − b1b′3)

32(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)b1b2b3
,

where bi = b(λi), b
′
i = b(λi)

′ for i = 1, 2, 3. The initial value ω|t=0 of the n-
point function ω(λ1, . . . , λn) also appeared in [7] (up to a certain factor), so we
conjecture that there exist certian recurtion relations of Eynard-Orantin’s type
[7] for the genues expansion of ω(λ1, . . . , λn).

We are ready to prove DVV’s loop equation (7). First we prove L0(Z) = 0,
which gives us a very nice gradation for everything. Then we will use a similar
method and this gradation to prove the whole Virasoro constraints, i.e. L(λ)=0,
where

L(λ) =
(
J̃(λ)W (λ)(F )

)
−

+
~

2π

(
W (λ)2(F ) +W (λ)(F )2

)
+

t20
2 ~λ

+
1

16λ2
.

Recall that J̃(λ) = J(λ)|t1→t1−1. We also denote t̃k = tk − δk1.

Lemma 16 The 0-th Virasoro constraint L0(Z) = 0 holds, i.e.

Resλ=0λJ̃(λ)W (λ)(F ) +
1

16
= 0.

Proof: We have known from Lemma 11 that Resλ=0J̃(λ)b(λ) = 0, which
implies Resλ=0J̃(λ)b(λ)′ = −1, then by using the identity

(λ− µ)W (λ)b(µ) =
1

2
(b(λ)b(µ)′ − b(λ)′b(µ))

we obtain

Resλ=0λJ̃(λ)W (λ)(b(µ)) = µ∂µb(µ) +
1

2
b(µ),

or equivalently, ∑
k≥0

(
k +

1

2

)
t̃k∂k(b(µ))− µ∂µb(µ) =

1

2
b(µ),

which means that, if we adopt

deg t̃k = k +
1

2
, degµ = deg λ = −1,
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then deg b(µ) = deg b(λ) = 1/2. According to Lemma 9, ω(λ, µ) has degree 2,
so we have

Resλ=0λJ̃(λ)W (λ)(ω(µ1, µ2)) = (µ1∂µ1 + µ2∂µ2 + 2)ω(µ1, µ2).

This equation can be also written as

W (µ1)W (µ2)
(

Resλ=0λJ̃(λ)W (λ)(F )
)

= 0,

so there exist constants C, ck (k = 0, 1, 2, . . . ) such that

Resλ=0λJ̃(λ)W (λ)(F ) = C +
∑
k≥0

ck tk.

According to the next lemma (Lemma 17), we have

C =− 3

2
∂1F

∣∣∣∣
t=0

= − 1

16
,

ck =

((
k +

1

2

)
∂kF −

3

2
∂1∂kF

)∣∣∣∣
t=0

= 0.

The lemma is proved. �

Lemma 17 For g ≥ 1, we have

∂3g−2(~F )|t=0 =
1

g!

(
~
24

)g
, ∂1∂3g−2(~F )|t=0 =

2g − 1

g!

(
~
24

)g
,

and ∂kF |t=0 = ∂1∂kF |t=0 = 0 when 3 - k + 2.

Proof: These intersection numbers are well-known. Here we give a proof
based on the Witten conjecture. According to the string equation, we have

∂k(~F )|t=0 = ∂k+1∂(~F )|t=0 = Rk+2|t=0,

∂1∂k(~F )|t=0 = (∂1Rk+2 −Rk+2)|t=0,

so we only need to compute b(λ)|t=0, and ∂1b(λ)|t=0.
Let β̃(λ, x) = b(λ)t0=x,t1=t2=···=0, then β̃(λ, x) satisfies

(x− λ)β̃2 +
~
8

(2 β̃ β̃xx − β̃2
x) = −π, β̃x + β̃λ = 0,

so we have

(x− λ)β̃2 +
~
8

(2 β̃ β̃λλ − β̃2
λ) = −π.

Let β(λ) = b(λ)|t=0 = β̃(λ, 0), then β(λ) satisfies

λβ2 − ~
8

(2β βλλ − β2
λ) = π. (13)

By acting ∂λ again, we have

2λβλ + β =
~
4
βλλλ. (14)
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From (13) and (14) we can obtain,

β(λ) =
∑
g≥0

Γ(3g + 1/2)

λ3g+1/2

(
1

g!

(
~
24

)g)
.

According to Lemma 4,

∂1b(λ) =
1

3
((2λ+ u)b(λ)′ − u′ b(λ)),

so we have

∂1b(λ)|t=0 =
1

3
((2λ+ u)b(λ)′ − u′ b(λ))|t=0 =

1

3
((2λ b(λ)′ − b(λ))|t=0

=− 1

3
((2λβλ(λ) + β(λ)) =

∑
g≥0

Γ(3g + 1/2)

λ3g+1/2

(
2g

g!

(
~
24

)g)
.

The lemma is proved. �

Lemma 18 Let K(λ) = L(λ)′, then

K(λ) =
(
J̃(λ)b(λ)

)
−

+
~
π
W (λ)(F ) b(λ) +

~
2π

W (λ)(b(λ)) = 0.

Proof: The expression of K(λ) is easy to obtain, so we only prove that it
vanishes. Considering W (µ)(K(λ))

W (µ)(K(λ))

=
(
W (µ)(J̃(λ))b(λ)

)
−

+
(
J̃(λ)W (µ)(b(λ))

)
−

+
~
π
ω(µ, λ)b(λ) +

~
π
W (λ)(F )ω(µ, λ)′

+
~

2π
W (µ)W (λ)(b(λ)),

one can obtain that

(λ− µ)2
(
W (µ)(J̃(λ))b(λ)

)
−

=
1

2

(√
λ

µ
+

√
µ

λ

)
b(λ)− (λ− µ)∂µb(µ)− b(µ),

and

(λ− µ)
(
J̃(λ)W (µ)(b(λ))

)
−

=∂µb(µ) +
1

2
(b(µ)′K(λ)− b(µ)K(λ)′)

+
~

2π
b(µ)b(λ)2 − ~

2π
W (λ)(F )(b(λ)b(µ)′ − b(λ)′b(µ))

− ~
4π

(b(µ)′W (λ)(b(λ))− b(µ)W (λ)(b(λ)′)) ,

10



and

W (µ)W (λ)(b(λ)) = W (λ)W (µ)(b(λ)) = W (λ)

(
b(λ)b(µ)′ − b(λ)′b(µ)

2(λ− µ)

)
.

Then, after a lenghy computation, one can show that

W (µ)(K(λ)) =
b(µ)′K(λ)− b(µ)K(λ)′

2(λ− µ)
.

The left hand side is well-defined when µ = λ, so we have

b(λ)′K(λ) = b(λ)K(λ)′,

then one can show that

W (µ)

(
K(λ)

b(λ)

)
= 0,

so there exists C(λ) such that K(λ) = C(λ)b(λ). On the other hand (see the
proof of Lemma 16), deg b(λ) = 1/2, degK(λ) = 3/2, so degC(λ) = 1, i.e.
C(λ) = c/λ. Then it is easy to show that c = 0 by checking the leading term of
K(λ). �

Theorem 19 The DVV’s loop equation holds true, i.e. L(λ) = 0.

Proof: The idea is very similar to the proof of Lemma 18. We first con-
sider (λ − µ)2W (µ)(L(λ)). After a lengthy computation, one can show that
W (µ)(L(λ)) = 0, so L(λ) = C(λ). Note that degL(λ) = 2, so L(λ) = c/λ2.
Then Lemma 16 implies that c = 0. The theorem is proved. �
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